Counterexamples to the List Square Coloring Conjecture
نویسندگان
چکیده
A graph G is called chromatic-choosable if χl(G) = χ(G). It is an interesting problem to find graphs that are chromatic-choosable. There are several famous conjectures that some classes of graphs are chromatic-choosable including the List Coloring Conjecture, which states that any line graph is chromatic-choosable. The square G of a graph G is the graph defined on V (G) such that two vertices u and v are adjacent in G if the distance between u and v in G is at most 2. Let χ(H) and χl(H) be the chromatic number and the list chromatic number of H, respectively. Kostochka and Woodall [4] proposed the following conjecture, which is called List Square Coloring Conjecture.
منابع مشابه
M ay 2 01 4 Bipartite graphs whose squares are not chromatic - choosable
The square G2 of a graph G is the graph defined on V (G) such that two vertices u and v are adjacent in G2 if the distance between u and v in G is at most 2. Let χ(H) and χl(H) be the chromatic number and the list chromatic number of H, respectively. A graph H is called chromatic-choosable if χl(H) = χ(H). It is an interesting problem to find graphs that are chromatic-choosable. Motivated by th...
متن کاملBipartite Graphs whose Squares are not Chromatic-Choosable
The square G2 of a graph G is the graph defined on V (G) such that two vertices u and v are adjacent in G2 if the distance between u and v in G is at most 2. Let χ(H) and χl(H) be the chromatic number and the list chromatic number of H, respectively. A graph H is called chromatic-choosable if χl(H) = χ(H). It is an interesting problem to find graphs that are chromatic-choosable. Motivated by th...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملMore Counterexamples to the Alon-Saks-Seymour and Rank-Coloring Conjectures
The chromatic number χ(G) of a graph G is the minimum number of colors in a proper coloring of the vertices of G. The biclique partition number bp(G) is the minimum number of complete bipartite subgraphs whose edges partition the edge-set of G. The Rank-Coloring Conjecture (formulated by van Nuffelen in 1976) states that χ(G) ≤ rank(A(G)), where rank(A(G)) is the rank of the adjacency matrix of...
متن کاملGraph Coloring and the Immersion Order
The relationship between graph coloring and the immersion order is considered. Vertex connectivity, edge connectivity and related issues are explored. These lead to the conjecture that, if G requires at least t colors, then G must have immersed within it Kt, the complete graph on t vertices. Evidence in support of such a proposition is presented. For each fixed value of t, there can be only a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 78 شماره
صفحات -
تاریخ انتشار 2015